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THE ROLLING MOMENT DUE TO SIDESLTP OF TRIANGULAR, TRAFPEZOIDAL, °
AND RETATED PLAN FORMS IN SUPERSONIC FLOW

By Arthur L. Jones, John R. Sprelter,
and Alberta Alksne

SUMMARY

The rolling moment due to sideslip in supersonic flow has been
calculated for a representative group of plan forms. The analysis
was based on linearized potential theory and was applied to trian—
gular, trapezoidal, recteangular, and swept—back plan forms without
dihedral.

The only types of plan forms that provided positive dihedral
effect throughout the range of Mach number investigated were the .
rectangular wing of very low aspect ratio and a trapezoldal wing
of moderately low aspect ratio having raked—out tips.

The variation of rolling moment with sideslip was found to be
linear over a small range of sideslip angles for practically all
the Mach cone plan-form configurations investigated.

INTRODUCTION

The calculation of the supersonic lateral-—stablility derivatives
has been und-rteken for a group of plan forms of the type shown in
figures 1 and 2 considered to be representative of the plan forms
proposed for flight at supersonic speeds. In reference 1 the
results for the damping—in-roll derivaetives were presented. Thls
report extends the results to irclude the rolling moment due to
sldeslip.

The load distributions for the sideslipping wings were obtalned
using the methods presented in references 1, 2, 3, and 4, The load
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2 . . NACA TN No. 1700

distributions were then integrated to obtain the rolling-moment
coefficient as a function of sideslip.

In general, the plan forms may be described as: (1) triangular
with subsonic leading edges and with supersonic leading edges;
(2) trapezoidal with all possible camblnations of raked—in, raked-
out, subsonic or supersonic tips; (3) rectangular; and (4) two
swept-back plan forms with supersonic trailing edges developed from
the triangular wings. A small changs has been made In ome of the
plan forms under investigation since reference 1 was published. In
roference 1, the swept-back plan form having subsonic leading edges
was developed by removing a smell trianguler portion, having sides
parallel to the Mach cones, from the tralling edge of a triangular
plan form heving subsonic leading edges., Due to the difficultles
encountered in analyzing the sideslip position for this particular
configuration, the portion removed from the basic trilangular plan
form hes been changed. A triangular section extending from tip to
tip 1s now removed leaving the wing tapered to a point at ths tip
as shown In figure 2, . .

Proevious work on wings in sideslip has been reported in
references 5, 6, 7, 8, and 9.
SIMBOLS AND COEFFICIENTS
X,y rectangular coordinates of wind axes
EsM rectanguler coordinetes of body axes

v free—sgtream veloclity
b span of wing measured normal to plane of symmetry
Cy root chord of wing

o~

over-—ell longitudinal length of swept-back wing

area of wing

S
A ) aspect ratio (?-)
o] density in the free stream

q free—stream dynamic pressure (g V2>
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Me

F (q>,k)

E(9,k)

rolling moment about longitudinal body axes
(positive for right wing rolling down)

M
rolling-moment coefficlent <—§-;>
a:

1ift

‘sldeslip angle, degrees

(positive when sideslipping to right)

rolling-moment-due-to-sideslip stablility derivative [SCL

oB
free-gtream Mach number
,,/Mlz-l

Mach angle (arc tan%)

slope of right wing tip measured from line parallel to
plene of symmetry in plane of wing

' (positive for reked-out tip, negative for rakea-in tip)
m

romt ratio of tangent of right tip angle to tangent of
B .

Mach cone angle

incomplete elliptic integral of the first kind with
modulus k

incomplete elliptic integral of the second kind with
modulus k

angle of attack, radians

METHODS
The problem of determining the load distribution on a wing

in sldeslip is essentially the problem of determining the loading on
an inclined flat plate. The fact that the plane of symmetry of the
plan form 1s not allned with the free—stream direction does not

greatly affect the anslysis,

were appllcable again,

The methods used in reference 1, therefore
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The load distribution on the triangular and trapezoldal plan-—
form configurations, having supersonic edges entirsely, were
determined readily by the source-—sink and doublet method of refer-
ence 2. The loading on an area affected by a subsonic edge in
conjunction with & supersonic leading edge or tip was obtalned by
a simple direct integration using the method of reference 3 with
the stipulation that the Kutte condition must be satisfled on all
subsonic trailing edges as provided for in reference 4. The trien—
gular plan form with subsonic leadling edges has been analyzed previ—
ously in the sideslip position and the load distribution is avail-—
able in reference 8. The method followed in reference 8 was used to
determine the loading on the subsonic—edged triangular plan form
lying between one edge of the Mach cone and the cone axis. In
reference 6, also, the expression for the load distribution on this
plan form is presented. ’

-The plan forms were dlvided Into sectors, bounded by the
plan—form edges and the Mach cone traces, in order to simplify
the analysis and the presentation of the results. Lift and moment -
oxpressions were obtalned for these sectors by Integration of the
load .distributions., In Appendix A, the formulas for the moments
of the complete plan forms are expressed in symbols representing
the moment end 1lift expressions of the plan-form sectors or combina—
tions of these sectors. These expressions which do not readily
combine and simplify are glven in Appendix B,

Another conditlon that required the simplification of the
presentation of the moment expressions for a complete plan form was
the change in Mach cone configuration that a wing in sideslip
undergoes in supersonic flow. As-the tips change from subsonic
to supersonic or vice versa, and as the edges end tips change
figuratively from leading to trailing edges by swinging past the
free—sgtream direction, the load distribution and rolling moment
change considerably. Consequently, it was necessary to divide
the sideslip rotation into a number of pheses in order that an
expression for the rolling moment could be provided for each
configuration encountered in the range of sideslip investigated.

The determination of an analytical form for CZB by differ—

entlation of the expression for C; as a function of B was
found to be impractical. Linearity of the C; variation with B
for a small range of sideslip angles, however, made it convenient
to calculate a value of the derivatlve based on the value for Cy
at 5° of sideslip. This approximation is more fully explained
in the discussion of the results.

P o e e Ty e gt - s - . - ————— -
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The plan forms are clasasified with regerd to the relative
positions of the wing tips and the tip Mach cones when the wing is
at zero sideslip. The ratio of the tangent of the right tip angle
to the tangent of the Mach cone angle Bm makes & convenient
index. The slope of the right tip m 1s defined as positive
when the tip is raked out and negative when the tip is raked in. -
If Bm 1s equal to or greater than 1, the tips are supersocnic
leading edges. If Bm 1s equal to or less than -1, the tips are
supersonic trailing edges. For values of Bm between 1 and -1,
the tips are subsonic.

DISCUSSION OF RESULTS

The general results are the rolling-moment-coefficient formmlas
given in Appendix A for all the plan forms considered. For a
practical interpretation of the results, a mumber of typical plan
forms have been selected for which the rolling-moment coefficient
waes calculated. These results are presented in graphical form in
figures 3 through 9. Included in Appendix A are expressions for
the values of tan B that mark the phase changes and for the valus
of tan B representing & span limitation. The existence of a span
limitation 1s due to the difficulty in obtaining an expression for
the load distribution when the Mech cone from ons tip reflects off
the other tip. The dsgree of sideslip is limited also by restrict—
ing the Mach cone origlnating at the Juncture of the trailing edge
and the tip from overlapping the wing. This limitation, tan B <B,
applies to all plan farms. Other limitations that were required
for the swepi~back plan-form configurations are explained when they
are presented.

It should be pointed out that for the swept-back plan—form
configurations the phases given do not cover the utmost sideslip
angle to which the analysis could have been carried. For the rest
of the plan forms, expressions are given to cover the utmost
possible sideslip angle that this analysis permitted. In most
cases, this represents a magnitude of sideslip angle far beyond
what normally 1s interesting and useful. In view of the length
and complexity of the analyses for the swept-back wings, however,
the sideslip angles considered for these plen forms were held to
& minimm, '

: c
Veriation of -ml with B

The variation of rolling-moment coefficilent per unit angle of
attack with sideslip angle for the specific plan forms comsidered

e e e rmmrn e e - — —_— e e e e ——
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are shown in figures 3 and 4 for two values of B (1 and -,i). If a

negative slope corresponding to positive dihedral effect 1s defined
as a stable variation of C; with B, 1t 1s evident that more
plan forms had unstable than steble variations. The breaks in the
curves are due to changes in phase that occur as the wing progresses
in sideslip. In some cases where the tip is raked out, the breaks
reversed the veriation of C; with B from unstable to stable or

vice versa.

It is evident, from the expressions for the moments end from
the curves showing the variation of C; with B, that C; 1s not
a linear function of sideslip and no simple expressions are obtalin—
eble for the derivative c-LB. For the values of B consldered

in figures 3 end 4, however, the variation of C; with B 1is

very close to linear for the first 10° of sideslip. To obtain an
indication as to the effects of aspect ratio and Mach number on

the variation of roll in sideslip for the plan forms considered,
therefore, it was assumed that a linsar derivative could be
egtablighed for at least the first 50 of sldeslip. In figures 5
through 9, this derivative is shown plotted as a function of

egpect ratio and as a function of the Mach mumber paramster B.

The assumption of a constant slope was Justified except at values

of B where & phage change ocourred within the first 5° of sideslip.

For the values of B ‘at which the variation of C; was

determined to be nonlineaer within the first 5° of sideslip, dotted
lines represent the value of the derivative for whatever sideslip
range the linearity existed. At the values of B for which, at
zero sldssllp, the Mach cones and the tips are nearly colncident,

a value of CzB based on the C; at 5° of sideslip was determined.
This value of O3, did not truly represent the slope of the O
curve because a phase change and & break in the curve occurs within
the first 5° of sideslip. This psuedo derivative is plotted as a
continuation of the solid curve in the regions where the dotted
curves exist. Its principal value is that it shows whether the
slope Increases or decreases Iin magnitude in passing from the first
to the second phase. At the value of B for which the Mach cone
and the tip are exactly coincident, the slope of 'C; with P is
constant for a range of sideslip greater than 5°. This point lies
on the solid curve at the value of B where the discontinuity in
the dotted branches exist.

The property of reversibility, whereby a given plan form
provides the same 1ift, drag, or damping in roll whether or not
the plan form was reversed with respect to the stream direction,
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did not ocour in the rolling-moment—due—to-slideslip derivative.

Apparently the lack of symmetry about the wind axes that results
from the sideslip prohibits the reslizetion of reversibility in

this ocasge.

C:
Variation of —&E with Aspect Ratio

The variation of CZB per unit angle of attack with aspect.

ratio presented in figure 5 for values of B equal to 1 and %

shows that for the most part the magnitude of the derivatives
deoreases with inoreasing aspect ratio. For the trapezolds with
subsonic raked-out tips, the derivative is stable and this reduction
exists throughout the entire range of aspect ratio investigated;
whereas the values for the supersonic~tipped trapezoidal plan forms
have gone from stable to unstable and ihcreased in magnitude with
increasing aspeot ratio.

As a trapezoldal plan form 1s reduced in span, 1t eventually
becomes a triangular plan form. This transition occurs at an aspect
ratio of km, If a triangular plan form is developed by reducing the
span of one of the supersonic raked—out—tip trapezoidal plan forms
shown, the value of the derivative changes suddenly from stable to
unstable. As the aspect ratio 1s reduced farther, necessarily reducing
the slope of the edge of the triangular plan form, the magnitude of
the unstable derivative becomes greater and then suddenly Jumps to
e gtable value as the leading edges of the triangle become subsonio

at an aspect ratio of 5‘- As the aspect ratio of the triangular wings

approaches zero, the’ values of Cip approach a value slightly
higher than the value given by Ribner (-0.0183, in reference 9) for
low-espect-ratio triangular wings. If the sideslip angle for
determining C; 8 were allowed to approach zero rather than to

remain equal to 5°, the Cy g Curve would approach the value given
by Ribner.

For all but a small range of aspect ratios at the lower end of
the aspect ratio soale, the rectangular and the trapezoidal plan
forms with subsonlic raked—in tips show a decreasing magnitude for
Cy 8 with Increasing aspect ratio. The trapezoidal plan forms with

supersonic raked—in tips have derivatives equal to zero because

at B=1 and B = % the tip Mach cones lie farther than 5° away

from the tips, and the load distribution is uniform yielding zero-
rolling moment for these plan forms until one tip crosses one of
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the tip Mach cones. The value of the derivative remeins zero when
this plan form has been reduced to an inverted triangular plan form.
Further reduction in aspect ratio requires a reduction in the slope
of the tips of the triangle which eventually leads to a phase change
and to the existence of a rolling moment due to sidesllp within the
first 5° of sideslip. This inverted type of trianguler plan form

cannot be investigated below an aspect ratlio of % because the tip

Mach cones reflect on the opposite edges. For the sames reason, the
trapezolds with subsonic raked-—in tips cennot be anslyzed if reduced
to trianguler plan forms.

As indicated previously, the rectangular plen form and the
trapezoldal plan forms with subsonic raked—in tips have a critical

value of aspect ratio at which the unstable value for Czﬂ stops

increasing in magnitude as aspect ratio is decreasing and tends to
become less unstable. TFor the rectangulsr plan form, this reversal

of trend occurs at an aspect ratio equal to %ﬁ which is
greater than the aspect ratio at which the tip Mach cones crossed at

the trailing edge A= % ). The rectangular wings were amenable

to analysis at Mach numbers low enough (1< AB<2) +to show that
this trend eventually yielded stable values for the derivative.

The aspect ratio at which the change from unsteble to stable values
occurs is half the aspect ratlo at which the curve starts to reverse

its trend, that is, when A = 3-3"'-32@- . From this expression it can
shown that there is a minimum agpect ratio of 1.635 at which the change
in the sign of the dihedral effect occurs. The value of B +that
produces this minimum is ﬁ . At these values, the reversal of
sign and the crossing of the tip Mach cones occur simultaneouysly.

For values of B greater than ,J§7§ s the reversal of dihedral

effect occurs at an aspect ratlo greater than the aspect ratio at which the
tip Mach cones cross. This order of occurrence is reversed if B

is less than A/37 .

The variation of CZB wlth agpect ratio for the swept-back

plan forms considered is shown in figure 6. For the subsonic-edged
plan forms, the trend was toward more stable values of the derivative
a8 the aspect ratio increased. For the supersonic-edged swept—back
plan forms, the trend was toward more unsteble values of the derivative
as the aspect ratlo increased. Thus the swept—back plan forms were

~
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the only ones for which CZp Increased in magnitude with an increase-
in aspect ratio.

CZB
Variation of —a- with B

The variation of Cig per unit angle of attack with B " gshown
in figures 7, 8, and 9 is the most useful curve for determining
the suiteblility of any plan form with regard to roll-in—sildeslip
gtability., With two exceptlons, the values of the derivatives
shown on this curve establish the stable or unstable sense of the
variation of C7 with p +that exists for the entire sideslip
range for a glven plan form et & given speed. . The exceptions to
this rule are the triangnler plen form with supersonic tips and
the supersonic trapezoidal plan forms with raked—out tips.

In general, the CZB curves are approaching zero at the upper
end of the B scale for all the plan forms. At the lower end of
the B scale, the curves tend toward elther very lerge positive
or negative values of C3 The curves are congldered In greater
detail in the following dgscussion of the individusl plan forms.

Triangular plen forms: Tips raked out, m = %, m= %.— At the

lower end of the B scale, all of the triangular plan forms have
subsonic tips. In this configuration, both of the triangular

wings considered, aspect ratio 6 in figure 7 and aspect ratio 2

in figure 9, have fairly large stable values of Cy,. With -
increasing values of B, however, the Mach cone approaches the
leading edge and crosses it and, in this range of B, Ci1g drops
from the relatively large stable value to an unstable value. The
value of C;, for this supersonic—tipped configuration then decreases

a8 B 1s increased and tends to approach zero asymptotically.

Triangulsr plan forms: Tips raked In, m--—%‘-,m=—%.-At

the lower values of B, the tip Mach cones ovwerlap these inverted
triangular plan forms, and the reflections of the Mach lines

from tip to tip constitute a configuration that does not permit
the formulation of loading and moment expressions in closed

form. When the Mach numbier has increased until the Mach conss are
coincident with the sides of the triangle, a closed form of
expression for the load distribution and moment can be obtained.
At this point, the first phase extends to considerably more than 50
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\

and an unstable value of clﬁ is obtalned és shown in figure T for

aspect ratio 6. This ingtability drops off rapidly and reaches
zero when B has increased to the point where the Mach cones fall
at least 5° outside the tlps. For sideslip angles greater than 5°,
the variation of C; with B (figs. 3 and 4) shows that when the
sidesllp angle reaches the second phase the zero value for the
derivative changes to an unstable variation of roll in sideslip.

Rectangular plan forms.— The variation of 07,3 with B for

the rectangular plen forms is quite dependent on aspect ratio. Below
the aspect ratio of 1.635 (as discussed previously with regard to
the variation of C-,,B with regard to aspect ratio) the rectangular

plan form gives positive dihedral effect throughout the Mach number
range investigated as shown in figure T(a) for an aspect ratio of
1.5. As the aspect ratio increases, the curve showing the Cy
veriation with B crosses into the unstable region at a fairly low
value 'of B but recrosses to the stable sides at a higher value.

As the aspect ratios became fairly lerge (A =6 and A =9 in
figs. T(b) and 8), the values of B for crossing becoms so small
and the values for recrossing become so large that for the range of
Mach numbers considered the curve seems to lie entirely in the
unstable region.

Trapezoidal plan forms: Tips raked out, m = -Jé'- -~ Thesge
trapezoidal plan forms show somewhat the same characteristics as
the rectangular plan form in regard to the reversal in the stability
of the roll due to sideslip that occurs at sbout the time the tip
Mach cones cross at the trailing edge. At the lower end of the B
scale in figure T(a), the curve for the aspect ratio 4 plan farm
tonds toward infinity in the stable derivative zone after completely

roeversing its trend toward the unstable zone from B =1 to B = %— .

At aspect ratios of 6 and 9, however, the curves shown in figures T(b)
and 8 have crossed the CIB axls and are heading toward large

positive values at the lower end of the B scale. Above the value
B =1, the curves for all three aspect ratios follow parallel
patterns. The magnitude of 025 decreases as the Mdch cones

approach the tip and,as the tips become supersonic, continue to
decrease finally approaching zero asymptotically at the upper end of
the B scale. The varlation of roll in sideslip was stable at all
times for B greater than 1.
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Trapezoldal plan forms: Tips raked out, m = % .— The aspect

ratio 6 with m = % is a triangular plan form. Above an aspect ratio

of 6, however, the plan forms having m = g— are trapezoids. At the

aspeot ratio of 9 shown if figure 8, the curve lies almost entirely
in the unstable region. At the aspect ratio of 6.5, shown in figure
7 (a), the curve lies mostly in the stable reglon except for the dip
into the unstable region near B = 1. The variation of C; 8

with aspect ratio shown 1n figure 5 indicates that at an aspect ratio
of approximately 6.2 the derivative is stable for B = 1 and

B = !3|= and, therefore, 1t 1s quite probable that the ocurve for a
trapezoidal plan form of this aspect ratio might lie entirely in the
stable range.

Trapezoldal plan forms: Tips raked in, m = - %.— These

trapezoldal plan forms have no essential differences in the pattern
of their czﬁ variation with B for aspeot ratios 6 and 9. These

ourves are presented in figures 7 and 8. The pattern of the varia—
tion is similar to the-variation of C’-LB with B for the rectan—

gular plan forms of aspeot ratios 6 and 9, tending toward large
unstable values of OZB at the lower end of the B scale and

dropping off in magnitude as B 1inoreases. The sudden drop to
CZB = 0 occurs when the tips have become supersonic.

For values of aspect ratio considerably lower than 6, where the
t1p erossing effect might become appreciable agaln, it -is quite
likely that czﬂ would tend to become stable at the lower end of

the B scale. _
Trapezoidal plan forms: Tips raked in, m = — %.— At an aspect

ratio of 6, the plan—form shape for m = —g— is triangular, but for

aspect ratios of greater than 6 the plan form becomes trapezoidal.
At the lower end of the B soale in figure 8, where the trapezoidal
plan form of aspect ratio 9 has subsonic tips, the roll—in-sideslip
variation 1s unstable as 1t was for the trianguwlar plan form of
aspect ratio 6. As B inoreases and the tips become supersonic by
passing through the Mach cone, the value of czﬂ based on C; ata

sideslip angle of 5° is zero. If the angle of sideslip im increased

N
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+111 the second phase is reached, however, the variation of C; “with
B 1is unstable.

Swept-back plen forms: Subsonic edges,m = %.- Over the limited

range of B's for which the computa‘bion of C-LB was possible, the

results indicated that C"'B dacreases with an increase in B, The

magnitude of the derivatives for this plan form was greater than the
megnitude of the derivaetives for the trianguler plan form with the

same edge slopes.
Swept—back plen forms: Supersonic edges, m = g-, m = 32'-.-- As

for the subsonlc—edged swept—back plan forms, the magnitude of the
derivative was greater than the magnitude for the corresponding
triangle and the variation of the derivative with B showed that
within the first phase increasing B reduced the magnitude of the
derivative.

CONCLUDING REMARKS

The veriation of rolling-moment coefficient with sideslip was
found to be approximately linear over a small range of sideslip
angles for the plan forms investigated. Both positive and negative
dihedral effects were obtalned.

For a glven plan-form type and a given tip or leading-edge _
classification (subsonic or supersonic), derivatives evaluated for \
the linear range of the C; variation with B were generally
Pound to decrease in magnitude with increasing aspect ratio. The
outstanding exception to this generalizetion was the swept-back
plan form with either subsonic or supersonic leading edges.

The rectangular plan forms of very low aspect ratio (A <1.635)
and the trapezoldal plan forms of moderately low aspect ratio (A%L)
with raked-—out tips apparently are the most satisfactory plan forms
for providing positive dlhedral effect. At the larger aspect ratios, '
these two plan forms provided negative dihedral effect over at least )
part of the Mach mumber rangs. The triangular plan forms and the
swept—back plan forms provided positive dihedral effect as long as
their leading edges remained subsonic but changed to negative
dihedral effect when the leading edges became supersonic. The
trapezoidal plan forms with raked-in tips yielded negative dihedral
effect with subsonlc tips, but achieved zero dihedral effect over
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a limited sideslip range when the tips hecame supersonic. The
general trend of the variation of Cip with Mach number wes a
reduction in the magnitude of the derivative with an increase in
Mach number.

-

Amsg Asronsutical Iaboratory,
National Advisory Committee for Aeromautics,
Moffett Fleld, Calif.
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APPENDIX A

FORMULAS FOR ROLLING MOMENT DUE TO SIDESLIP
General Restriction: tan B<B
. TRIAWGULAR WINGS

Subsonic Tips

Bm <1

cz = M—g_ = Eg__
asb  2qc,.%m2

Phase 1, O <tan B < (l'ﬂ
- - \Bin

/
M, =M /
) Phasea,(l-_Bm < tan B <m
Btm /) = =
/
/
/




NACA TN No. 1700 15

(]

/

/
/
/
Mg =My /
Supersonic Tips
Bm >1
Mg Mg
C-L = = —
gsb 2gc,°m

. TPhase 1, 0 <tan B < _Bm'l>
Bém

M§=ME

Bm-1
Phage 2 —_— tan m
? <B+m ) =< B <

M§=Mc

N e e e e - B e ]
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Phase 3, m‘fba.n B< (;.%Z?m //
) /
/
% =¥ !
Bm< -1
Mg Mg

B+ ’
Phage 1, 0 <tan B <~ ——
B G N/
I\
/ /
) 1\ \y

Mg=0 I\
Phase 2, -(;%-:])5 tan < - m
\
K/
I\ \

Mg = Mp [y !

Phase 3, — m <tan B < L )

Bim \
1\ \
/\

Mg = Mg ! ] /I \\ /
° SWEPT-BACK WINGS
Subsonic Tips
Bn <1 _
% = f:sgb B blzig
g —=x
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17
1
my ——
B+.,/]32+1
_]32+2%+1>
C
\ Phase 1, 0<tan B< 1
- - Bim
/ \
/ /7 \ \
2 Mg = My — Mg
240m a
(e 1) < ('l.—c:_-t.)SIBm'l.b
<—Bal-2%l-1) ’
Bim~(1—cyp)
Phase 1, Osta.n BS m

Mg =My — Mg

B+,/ B2+l

0< (z_cr)sl B24-2Bm.1
-3242%1) AL -

7 AN
// N
7 \\ Phase 1, O<tan B<m 7 \\
// \\ Mg = 7 N
// \ E_MA—MH 7 \
1--Bm Ve
7 \\ Phase 2, m< tan B<—— //
/s
s
Mg = Mg — Mg

aInside left edge hits Mach oone from cutout before right leading '
edge becomss supersonic.

vents Mach cone at cutout from crossing wing at zero sideslip.
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1 (B2+2Bm-1)°

(—Bz-l-% +]>‘5 (Z—cr)f . %)

AR Phase 1, O<ten f<m
// \\ M§=l%-—MH

Phase 2, n<tan g< M
B " B(l-cr)+m

Mg = Mpg — Mg

m (3 °-< ) <Bm1
() < en) <

AN Phase 1, O0<ten p<oim=(l—or)
, N =B (l—p)+im

VAN Mg = My ~ Mg
Supersonic Tips
Bm> 1
cz_ME _ ] —Mg

£
m<.&
B2-1

Y
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®Inside left edge hits Mach cone from cutout befare right leading

d.L:dge becomss supersonic.

Tt leading edge swings past X-axis befare ingide left odge hits

Mach cone from cutount.

©Tnside left edge hits Mach cone from cutout before left leading

? edge swings past X-axis.

Prevents t-exis from crossing Mach cone at right before left edge

hits Mach cone.

1

¥
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z<-32+2_lf. +1) -
0< <
_@ﬁL_@ ) _
1
Phase 1, 0<tan 55_‘ )
+1
Mg = Mg — My
1 (-Bz% + 1) o) 2 ’
1 < =
(B2+2Bm-1) S mB
Phase 1, 0<tan ﬁsk-ili(}:-cr—)
Bi+m(l—cy)
// \\ |
\ Mg = Mg — My
/ \ 3 ) // \\
Phese 2, M <tan g< %_l.
Bl+m(1—c;) Bim
Mg = "N
g = Mg — Mg C—7 AN

8Tnside right edge hits apex Mach cone before left leading edge
hits apex Mach cone.

vents cutout from overlappling apex Mach cone at zero side—
slip.
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Subsonic tips

0 >Bn >~1

-m < 1

" e A

TRAPEZOIDAL WINGS

Phase 1, O0<tan < —-m

I\
/[ A\
J \

\

Phase 2, ~m<tan B<

Phase 3, -——-<'ba.n B<
B-m

Phase L,

My = My + Mg + My
~(v/2) (Lo—Ly)

1+Bm

Mg=Mp + Mg + My
- —(b/2) (Lp-ig)

1+Bm

Mg = Mp + Mp — Lp(b/2)

1-Bm

Mg = My + Mg + Mp
~(b/2) (Iy+Iq)

" g8b  qopb (btopm)

/

:;“mﬁﬁmmMm

NACA TN No. 1700

Span limitation

< B(btopm)—cy
~ Boptbtc,m

\

A
- 2
&
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o> —L
B+ ./B2HL
Phase 1, 0<tan B< ;"‘_'im
/ /7 \
/ \ /N Mg = My + Mg + My
\
/ /
\ \ ~(b/2) (Lo-Ty)
Phase 2, B < tan BS

Mg = Mg + Mp — (b/2) I

_Phase3,-m<tanﬂ<;ﬂ
= Mp + Mp — (b/2) Ip

Phase U, i’—'B#l-l<ta.nB<
Bim

Mg = My + Mg + My
~(v/2) (Lyig)

limi'l‘.a.tion

~
~
/
//

<P
/

21
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0 <Bm<1l

Mg Mg

Cl = ==
L aSb  qepb2

Phase 1, 0 <tan g <1/B

W= Mp + M + My
—(Lp-Ly)p/2

. Span
Phase 2, 1/B <tan g < limitation

M = g+ Mg + My

~ (ytlg)b/2
o, Me __ Me
17 @b qorb (bmoy)

Phase 1, 0<tan B<m

Mg;%"‘M_R + My
-(%—m} (Ip-Ly)

NACA TN No. 1700

Span limitation
tan B < Bb—Cr

~ Beytb.

tan B < B )-or
~ Beytb-men
// \\
/
71\ AN A
/ A 4 \
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m> 1
B+ 1/1_32-i-1
/] /
/ \\ / \\
/ —F \

FPhase 2, :m<-l:a.np<l‘Bm

= Bim
M§=MP+1\@R+MN
(— -mor(Lp-LN)

Phase 3, %<m B< l+Bm

Mg = My + Mg + MR + My
~ (ot ) - )

l+:Bm
B-m

M§=MV""MQ

-limi%%ion

My

~yig)(Bmor )

Phase 1, 0 <tan 3<1"3m

Mg = Mp + Mg +

B+m

My

-(I?-IM)< -g—mo?>

Phase 2, i=Bm< <
* B~ RS m

Mg = My + MQ + MR + My
~(Ly+TqTy) < 5 ‘mr)

8

'
%
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Phege 3, m<tan BS:]B'—"'_%
Mg = My + Mg + Mg + My /

—(Ilv"'Lq-I'lv)( % "m"r) / \

1+Bm

Phase L, = <tan B Slim?%%ion
\
$
Mg = :Mv- + MQ + l&r 7\
b / h
—(Iytlg)\ 5 —mOor / \
Supersonic Tips Span limitation
BmS -1 tan p< Bmor+b)—or
~ Boytbt+me,
T T
/\ gSb _9.-°rb (b+mey)

7

/ \ 1
Phase 1, O0<tan B < = ——
= = - \
’; ; \
' / \ \
M§=O / \ 7

Phase 2, -<§%)Stanﬁs—m \
\
Mg = Mg + Mp — Lo(b/2) / \:\ ,/J \

Phase 3, -m<tan B < <.J_.—_Bm
- - Bim

Mg = Mp + Mp — Ip(b/2) AN

- ——— - C e mmh e o ———e——— J— - Am——— = - - - -— -
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Span
Phase L, . C"‘Bm> < tan B 14 L tation

Mg = My + MQ + Mp
~(IytIg)b/2

=Me
% aSb  qepd (b—m0r)

Phase 1, 0 <tan a<Bm-—1
B+m

M§=MV+MQ+ M+ M, + My
- (iytlqrtgty) (2 -noy)

Phase 2, B-—-m"—];<ta.n B<m
Bim

Mg = My +.MQ + Mg + My
—(Iy+Ig-Iy) (% —mor)

/,\

Span limitation
tan p< S0-0r)-cy
- .'Bcr+b—mcr
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Phase 3, m<tan ﬁ<£'.'.32
< ~ B-m

My = My + My + Mp + My

-

- (Lytlgiy) (‘2‘ ‘m°r>

1+Bm

Phas =20 <tan Span
° L, Bm < B 5l:!.mi'l;a.t.:!.cm
M§=Mv+1.fq+m..|3

_(I.V+LQ)(%—mcr>

NACA TN No. 1700
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APPENDIX B

SUMJARYOFMOMENTANDBSENTIALLH‘TEX?RBSSIONS

|
' v |3

~2roge,m® sin g /G
) ' " = 3 Bn

E 1s the complete elliptic integral of the second kind with modulus

S

(1-m2 tan2 B) + B2 (m2 — tan2 B)
oBm (1 + tan2 B)

_ /[ (3tm ten B)Z — B2(m —tan )3 [ (1-m tan D Z @ wmB)Z]
2Bm (1 + tan2 B)

B. tan B> m

-2rage, P [1-m ten B
3B l+m tan B

MB=




[T - ——————

N
. N
N
\
o
TV
§
lﬂ"|dq4
&
X
M)
3
E_D‘"!l
o 1
éll
= |
(/1]
N
e
")
{
w ||}
i
+
=
&
Bl
=1
00LT *oN NI VOVN

1-Bm
<=
vhon m<tan P

ge

P=/ [B(m + tan B) =G (im ten )} (14m tan B) oy + k!
[Ga(lem tan B)48 @=ten B))(1m tan B)(1-Ga®) |EX, 5, XV 15y (gu)x = (9,0) ]
Gy Jo=x'®
where
(1_o=2 dowd o\ _noafed s..o o) [/ T71im dmee AV\D moOfe. A ala] i o o o\lg ok i dmem Al
Gy = \ L™ uan™ p/oma = P)T A LAL WO P/ S=DS\0 =L0I P/™J4 L. L P/ =00 T VGL B\ = J
2 B tan B (1lme)

Gy (1+m tan p)+B(m —tan B)
k = 4\/1 iE k' o
—k (1+n ten B)+G;B(m —tan B)




NACA TN No. 1700 29

D, mpqﬂ)m ,
vy
/// mal
7 1y = —qac,S/2u (m + tan B)[m(B+ tan B)+(1-B tan B)]
s 38
3(B+ten B) o/m(B—tan B)+(1+B tan B)
.
8
X
E.

_ Yqac,® m(tan B) (1 + tan2 B)

3(32_ tanz B)3/2

Mg

-aqb®m [1+B(tan B)* m (B—tan B)]
= 6./2 ./B+tan B [m2(B—tan 8)-m(1+B tan B)1>>




My = —agb®[11n3(B —ten B)-11 ten B)(14B tan B )-Sm(1 ++tan?p)]
12 B JB+tm P [m(B—tan B)-m(14B tan §)1°"

Loefeey .o a I_:f'.- r £9_n_\

- HOL4 I~ B - 3 N\

e P e e
+/n [N E\M -| 1
" 1 2/ 18 (1~e)®182 1

where B 1s the camplete elliptic Integrel of the second kind with modulus -,/J.-Ga

_ (1=n® tan® g)+3=(ma.ma B)= o/ [(14m ten p)3B2 (mtan B)3] [(1-m tan B)2-B2M +tanfp)=]
2Bm (1 +tan2 B)

ot

e e i — e ——

OQLT "ON NI VOVMN



e p/lmtanBix_ el 3(top)
xHullw.uwo.smBm.w Hﬁﬁuuﬁm °r ,ﬁ:.n...?louvmum

)

z.q..+ E _Huuu...p N:.THEE...HAEEF+Eu:t___?”ouvn.aﬁu?:ﬂdEE._wmnHTEﬂIB_
* 3% mB(1 + tan® p){R1=oy)

00LT °OH HI VOVN

1€



{x/fBE(mf::a)i—:i—mtanﬁ)a} {_ - :“’ —lg?ﬁ}

+ gig? (1-m ten B)-B2 (tan pYm +ten B) J' —
' mB(1 + ten? B) L/B%(m + tan B)2~(1-m tan )2 J

_ 3 . (tanp)¥l-m ten B)+B%(m+ tan B)
{(m+tw P ( 8m ¥ B2(m ++ten B)5~(1l-m tan p)2

_ 3nf(terp) (1-m ten B)B2(m+ten )12 (B2 tan? B)

L{B2(m +ten B)2~{1-m tan p)2] 2 4[B2(m +tan B)2{1-m tan B)2]

(tanf) (1-m tan B)+BZ(m+ tan B) ) }

3
+ (m—tan B) (‘ Bn W[B2(m + ten B)—(1-m tan B)2]

+ of(1-8 ten2 B)1%42(tan )(BZ1)mi (1~or)-(3%- %en P2 l—on) =

et

*ON ML VOVM

oolT



—— ——— e ———

{(Mm B)( 2(B2— tan® B) h{B’-(m ‘tan 5)2—(1+m tan B)%]

+ (m—ten p) ( 0, 2m® Toym®

12 opZm®

2(:13,2 tanz B) :B’-'(m—tan B)2{14m ten B)2 h[Ba(m-—tan B)2{(1+m tan B)2 ]

. Q0LT *ON ML VOVN

_ 3opw®i(tanp)(1im tan B)-B%Hm~—tan B)] ]

4[B%(m—-tan p)2~(1+4m tan p)*12 /)

+ io® taan B { or9®) { (avten p) ( 3

4 [BZ(m + tan B)3~(1-m tan B)2I

_ 3[ttan #(1-m tan B)+B3m+tan B)] _ 1 )
li{.'Ba" cae 0Y2 (. oo aV\2]2 b P2 aoe 812 fa.o s 8121
\I+ e p) —\L1-o p) 4 LD \i—vall p/ (R p; 4 7
+ (m~tan B) ( — - 3
Y [B2(m + tan B)2~(l-m tan B)2]  lm[B2(m —ten B)3-(1l+m tan B)2]

£E



_ 3lttan B(14m ten B)~B2(m—tan B)] )}
4[B%(m - ten B)5A(l+m tan B)Z]2

+ gigt (1 ten p)+B2(tan f(m — tan B)Jim(1-o0p)ften H(14m ten p)-B2(m—tan B)]
mB(l +ten® B)o,

(m+ tan B) 0% | ox®n®ftan B(l4m tan B)-B%(m—ten p)1°
8

[ { 30y
1 JBE(m—tan p)5{1wm tan B)2 \ 4[B%(n—~tan B)2~(1+m ten p)2 ]

. (n —tan ) (- Jlom®(1-op) _ cz°nt(B=- tan® )
2(n—ten B)2(1wm ten B)2 2 MB2(n —ten B)2{Lm tem §)3]

4 op%n®{tan A(14m ten B)-B2(m —ten B)] . 3or®wtlten A(14m ten p)—aﬂ(m—i:an B)]=2 )}
B2(m —tan B)2—(l4m ten p)2 4[B%(m—ten p)%~{1l4m tan B)%)2

L

OOLT °*ON NI, VOVH -

et e - e e ———— . . -



——— e u A ———

+ gig2 {1#m ten B)4BZ ften Hlm—ten B) | (m+tan B) ( — 30y°n®
m B(1 + tan2 p) ®(m—tan B)2~(1+m ten B)2 8

O0LT "ON NI VOVE

_ ox®mBftan B(14m tan B)-B2(m—tan B)] ),,_ (m—tan p) (_ 3ox°m?

4{B%(m—ten B)3(lm tan B)2 ] 7/  /BZ(m—tan p)3~{lim tem )2 > 8

_ o®n?[Gan B(14m ten B)-BAm—ten B)] _ 3cpPn*ften E{I+m tan B)-B2(m—tan B)]2
B3(m—tan B)3-{1lim tan p)2 4[BZ%(m—tan B)2(1+m tan p)2]2

o Ox°w4(B2—tanc p) )}
4[B%(n— ten B)%~(Llim tan pf]

. = fran A(B241)1d{B2— tan® BRIl 2—0.) [ 18m fhon &1 ++an2 a) 1 |
+ gin & Fars Y L L} il Aeed, Wit &0 4 i' e Sk v 1 Sl N f _I
B1{1+ tan2 p) (B2~ tan? p) 8/2

Ge



——— e ——— e - o

—1 1 (tan B(B2+ 1)+4m{ t~o0p) (B2~ tan® B) | 1% (ban g1
o = + 48 [ - s Lo BB emlr {Pmplearn ]

B3(1 +ten2 B) (B2— ten

o gy 11— tan B)-B2Gan H(m +tan B) Ji—fen B(1-m tan §)+BZ3(m + tan f) Jm(t-o0p)
mB(1 + tan2 B) oy

{ m+ tan B (_ilozmp—('l.-or) oz n [ben B(1-m tan B)+B2(m+ tan p)]

;Eﬂ(m +tan B)3~{1l-m ten p)2 B2(m + tan B)51-m tan p)=

+ 30p°u® fhen B(1-m ten B)+B%(m+ ten B)1% og®m(8? ~ ten® B)

1"[32(1'1+'ban B)3~{1-m ten BY)2 L [5%(m+ tan B)a{l—m ten ﬂ)?
- (m—ten B) cramanim B(1~m tan B)+B2(m+ tan P)] _ 3%%2 )}

B2(m + ten B)A{1-m tan B)2 ‘W B2(m+ tan B)E-(1-m ten B)2]

—————— e o e

00LT *ON NI VOVN



— / (1-32 tan® p)122(tan XBE+L)mI( 305 )—(BE —ten? B)mZ(l—op) B

. 2(B2—ten2 B)  [B2(m+ tem B)PA1m tam B)Z]

L e

OOLT °"ON NI VOVN

/ 2 opZn®
\

{ (m-l—-l-.u-n ﬂ)

loym? » 3opZtan E1-m tan p)+BE(m +tan B)] \

" B[B2(n + ten B)2{1-m ten B)Z] Y[B3(m+ tan B)3-{l-m ten B)?) -
_ g 12 _ ’ crEmE \ ]
+ (n—ten l3)(2(:132--- tan® ) &[B%(m+tan B)E~(1-m tan B)=2 }

_ iyt [(1#m ten )+B2(tan Bm—ten BJ] i—{fian B(14m ten B)-B2(m—ten B)m(l-o.)
mB(L+tan® pYRi-oy.)

r (m— tan B) 7 310-am2( 1—0;) . Om2

o-m2( . _ M2 N
i;ga(m—‘ban B)3—(1l4m ten 5)2( 2 #; )

‘-_r_J
I
LE
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<;.+ZB tan B

My = + ll-_a.g_[ -1 2Bl 241) 1 2m(BZ-1)+B(3m™1)] cp
17 B(n=+1) (21—cy)

2 2( ) 8,2
{7====2 o Teeyer) L e

1+B2

+ Am(B3+1) [2B(m3+1) zcr-m(BZ.;.zam_l) 2] {( (m=+2Bm—1.)

( 12 4 legm + c2m2(B312Bm—1.)
2(B2+2Bm-1) 12B(1+n°) 12B%(14m®) 2

_ﬁm_) s 1 (12(m+23-32m) , Im(i-oc;)
8B(14m=) B(14B2) \ (B2+2Br-1) 2

L 3PEE1)(wB)  _ loym[2B(2n+1)m(B%1)]
2(B2+2Bm-1) 3B(m>+1)

212n B24+2Bm—1 2,2 ¢ 2m2[ 2B(2m2+1)+m(B2-1) ]

g —

+ Cr
5 B2(14m2) (1489 3B(1+m=)

a'II:e:E"l:, leading edge hits Mach cone from apex.
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+

Klown® | hop®n(522mn-1) )}
15 15B(wr1)

- crm@2+2Bm-l)—B7.(m2+I) 1°m(1+m2) (Bm—~1
* sin BL(me+1) { (ZBE-PZBm—l)a?é :71+az}

+ gig—? 20(1-B2)+B(3-m2) cyom2 }
: E(1+32) (mB-L1) (m+B)

B(1-m2)

3 [2m(B3-1)+B(3m31) ]
{ (w4 2%m=1) <§ % (B (aB1)
, 3[em(B31)+B(3m21)12 _ _ m(B2+2Bm-1)
64 (m+B) 2(mB-1) 2 16(m+B) (mB~1)
4 3m(B22Bm-1) _ [B(3m%)+om(331) 1[2B(om31) +3m(331) ]
B 4B(m+B) (mB~1)

3[B(3m=1)+om(B31) ]2
16B(m+B) (mB-1)

BoEEsE) )

(n2+2mB-1) 3(m+B

+ fu(1+B%) (w+28-37) {(m+.'B) } {(m+3)(1+32) ~ 16(uB-1)

39

-

e ——— ey tr e -
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+ 3[em(B31)+B(3m33)] _ _ (m#B)2 _ m(BZ24+2Bm-1)(m+B)2

64(mB-1) 2 ~ 12B(14m2) 12B3(1+mR) 2
3@B)=Y, _ 1 (_ [2B(20%2)+3u(321)] | mB
83(1+m2)_ B(1+B2) 4 (mB-1) 4

4 3[B(3m2a)son(p21)] _ m(B2+2Bn-1) (msB)

16(mB~1) B(m2+1) R

(m+B) [2B(2m3+1)+3m(B21) ] m(132+23m-1) [2B(2m3+1)+3m(B3-1) J(m+B)
3B(m>3+1) 3B2(m3+1)2

_ 2(m+B) _ im(B2:0Bm1) (w+B) _ m2(B2+2Bm-1) 2(m+B) )} :|
5 15B(m®+1) 15B%(m3+1) 2

" [s —2 41(mB-1) (m+B)—[Pm(B3-1)+B(3m3-1) Ic..
B(l'l'mz)c;p

{ n24+omB—1 } { 10;22( 1—cr) <

2,/m(1+82) (nB-1) (m+B) Y(m B—l)(m+3)>

3[2m(B2-1)+B(3m3-1)] 2 m(B"’—i-&nB—l))}
16(m+B) (mB-1)

( 2m(B3-1)+B(3m31) —
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+ o/m(148%) [412(aB1) (@B)+2lop {em(32-1)+3(3m2—1)} —orPa(BE42Em 1) |

_ (m2+2mB~1) 12(m+B) _ .Cu3m + lc,m

(mB)(1483) \ 2(B22Bm-1) 4(uiB-1) 16(mB-1)

4 3cpanl 2m(BL1)+B(3ma-1)]> R ( 1 )
6k (m+B) (mB—1) 2 B(m+B) (1+83)

<_ 12(m+28-8%n) (msB) |, Im(i~op)(m:B

(B242Bm-1) 2

_ 313(@B1)(miB)2 | cpZmleB(2mR1)43m(B31)]
2(B3+2Bm-1) b(mB-1) .

_ loym(miB) _ 3op®m B(3w31)+om(B24)] )}
L 16(mB-1)

_ it LB(3m*1)+2m(B%1)] —oym(B+2Bn-1) { °m(14m®) (mB-1)
' B1(m2+1) (B2+2Bm-1) 8/2, /1482
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+ gind hZSmB-lMB-I-m):[amSIBa—lHB(&n 1) Jop { op m> }
B(1+4%) oy :E(l+32) (xB-L) (m+B)

2B(2m2-1)+ B2-1)] [B(3m21)+2m(B2-1

{- Im(B240Bm-1) + BB

_ 3[B(3w2)+om(F?-1)]2 }]

4(m+B) (mB-1)

Mg = MJ;, + MK';
- _ 1% (tan Y31 +tan2p) C
MK:. + ?_;ﬂ [ (B2 tan? B)e/2 p
(m+ tan B) {_ or % fpan B(1-m tan B)+B%(m+ tan B)]
* JFo(m+ tan P)2{im tam B) B2(m + tan B)2~{1-m tan B)2

___opSn*(B2— tan2 g) 4 3cpn®[Gan B(1-m tan B)+B3(m+ tan _g)]a
ll-[Bz(m+'tan B)2«1-m tan 3)2] 4[BZ(m+ tan B)Z{(1-m tam B)Z]%
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_ 3lcam®(1—cp)
)
+ (m~tan B) {30231112 + 3lorm®(1~cp)
/B2~ ten B)2{Lim ten B)2 2
_ (m—tan B) crn®[fian f(1-m ten B)+BZ(m+ tan B)]

/B3(m + tan B)3(1-m tan B)Z 4[B3(m+ tan B)3~(1-m tan B)2]

sl
8
(JJ;B tan B

2a.q[ m® + 2 B m-1 3lcym®(l—cy)

Mgy =+ 57 2:7m(1+32)( mB—1) (m+B) - 2

3

-— cr smz
L (mB—1) (m+B)

3{ 2m(B3-1)+B(3m= 1)}2

( en(B3-1)48(30%-1) — 2B )5

bLef'b leading edge hits Mach cone fram apex.
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. m(BaramB—l)) }__ 18m(mB~1) (1+m2)
L (B2+2Bm-1) 3/2 ,/14B2
- crom? {— 3m(B2+2Bm-1)
8B ;;m(l+B§) (mB-1) (m+B) :
. [2B(2m2~1)+3m(B3-1)] [B(3m3-1)+2m(B2-1) ]
(m+B) (B2 )
_ 3[B(3w31)+2m(B31) P ]
4 (m+B) (mB-1)
Trapezoidal Wing Components
L.
/ !
y
m=—2/
€ \
4 \
x §
_ 2gacrB(1 + tan® B)+(B®~ tan® B)(m—ten )]
LL = (Ba_ta_nz ﬁ)S/Z .
2qacy? (m — tan B) [m_(1+Bta.nB) :I
V3 (m—tan B)Z — (L + m tam B) (B — tan B)



My = 2 {(3%1) tan B, o _ B(1+ tan® B) [-4(itan g)( )+B(1 +tan® p) ] } é
. —'hqne 8 (B2~ tan® B) SR 4on® 0120 _+o a) -

2 A L S\E =UELD ps o \E= P! J4 =

-

3

M. ©

Tag = sg_e;-_BELwanB) 1—31! g—atmeﬁ)l

Lo.. my

\ni-uln P} ..,;.B-

My = qﬁzw{#[(hm BY(m—tan B)] [3m(B+ tan B)—{3.Btan f)]
12(B +tap B)? ABE—-tam® p

Gy



Iy

My

Lo
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qocr?[B(m—tan B)+(1+m tan B)]
(B+tan B) ~/B2— tan® B

qaoy°[3u(B + tan B)-5(1-3 tan B) 1(m(B+ ten B)+(1-3 tan B)]

12(B + tan p)2 vg’-'-m-z B
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_ 900, *[B(n + ten B)+(1-m tan B)]

(8—tan B) BZ—tan® B

My = —30er°(3n(B—tan B)-5(1+B tan B)lIm(B— tan B)#{14B tan )]

12(B—tan B)2 4/B2—tan® B
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o 3%0r™ 3m(B —tan B)+(1+3 B tan B — 2 tan2 p)]

(B~ten B) ./B% tan

= 'qfwre
12(B —tan B)*2

JoPten® p {” [(3-ten B)(n +tan A)I( 3u(B-ten B)~(1+3 tau B)]

+ [ 3u(3—tan B)-5(18 ten B)I[n(B—ben F)+(148 bea p)] |
Q. m
_/— ¥

m= R

4

A1

2gaop2[B(L + tan? B)+(B2—tan® B)(m+tan B)] 2qaor” (m + tan B)
I'Q = - B (m ﬂ) -1
(82— tan® p) 2/% VB (m + tan B)2 — (1 — m tan B)® {[B+ta.nﬂ ]+m}

_ 2qa0,® (m +'I:-an ﬂ) f (B%1) ten g _

3 JBES (Bg—tanz 8)

4+ B(L+tan® p)[ h(tan B)(BA41)+B(1+ten? p)) }

(A2 tan® B)Z(m 4 tan A)
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g = oaor™(1457) tem B [ (b-Cozm) _ 20;B(1+tan® p) ]
(B2~ tem?® ) 3/2 2 3(B2—tan? p)

8. m<0

Mg = Jeaor® (1+32) tan § [g _ 20yB(1 +tan? B) ]

(B2~ tan2 p) /2 3(B2~tan? B)

o [51=- C"B 2= {EE)A]
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o 2quop®(m—tan B) _ (148 tan B)
0 R e P (Tm tam D)2 [m (B—tan B) ]

My = 2qu0; .- tan §) <1+3 tan B ]
3 /B2(m~ten B)2(lm ten sizl B—tan p
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Figure |.—The ftriangular, frapezoidal, and rectangular plan

form types investigated.
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Figure 2.—Swept-back plan forms and Mach cone
configurations investigated
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(a) Trapezoildal plan forms of ospect ratios 4 and 6.5 and rectangular plan form of aspect ratio 1.5

Figure 7= Varfation of roli-in-sideslip derivative per unit. angle of attack with Mach number paromeier 8

M
[ £ 7 4 ?
- 030
\
G.z ‘—.025
_#
a -020f
. —
-0/5 N 4:65, me3/2
¥
AN N ase,me1re [\
—0/0 |\ - - - -
AR W
~005 TR P A= —
| ( L/ R~
S =S
0 N — T"=
005 ; - = y =

00LT "o KL VOVN

N
B |



i ' m——  w m— e e = = -

o _f t
~0/5) \"v-—- a/e N
N
" 7y A—
-Q'_"' .
=005
//
o Ve _._-—-E 4
VI

L
ol ]

010 / //

o

[
\‘
—
\\

o

elrs Fwnn

nidnl mned wnndrnrnes

’Il T—l‘ﬂ-ﬂ] nNnAY 7.
W/ (ITUnyuiur, iTuuGLUiuus, Gird soiruan

Figure 7.— Concluded

OOLT °OK NI VDVN




_N
Y
—tn
OOLT "ON NI VDVN

M
=05
/m=3/2 i N
6, ' el \ -
a 005 'Y (I
- ‘./ /f
) i -
hGEE =
005 14)®: ”:’"’f \ /
. ‘ [// \\m'o A l TJ
010} J/ e
L me-3/2 < e
015 J l I

o / 2 2 3 4 5
. Flgure 8 =Varlation of, roll-in-sldeslip derlvative per unit angle of atiack with Moch numl;er

parameter B for lypical trapezo/dal and reéctongular plan forms of aspect ratie 9.,



SR

_ ozsh £ 3 { il
-020 s mei/8, 423 ’Z;&‘
\\ \ N
~orsl N T~ . /"!”//2. Az2 /Z}
G, . <]
_ : =372, 4:6 P~
=-0/0 A \\
-~005 \ ‘
i N
) | =
\ o e s pemo== \| /2, A2
1 I e /AN
005 \\ //I/ L\._ : )
\\ M/E, A=6 \ID:I/Z'ABJ A
010 \ / ~ # > .
Y/
- Ol5 vfl_/‘ N . '
'.'/ \m=3/2,.4-9 ﬁ% R
020 i I ey
o / 2 E] 4 5

8
Figure 9.-Variation of roll-in-sideslip derivative per unit angle of attack with Mach number

parameter 8 for typical triongulor end swepi-back plan forms.

OOLT °ON NI VOVN



